Bihar Board Class 10th Math 2011 Question Paper ( Set -C)
1. दो बिंदु P(2, 3) और Q (4, 1) के बीच की दूरी का मान होगा |
- 2√2
- 5
- 2
- इनमें से कोई नहीं
2. निम्नलिखित में कौन अपरिमेय नहीं है ?
- √7
3. दो क्रमिक सम संख्याओं का H.C.F. होगा |
- 1
- 2
- 3
- 4
4. बहुपद x2 – 4x + 1 के मूलों का योग होगा |
- 1
- 3
- 4
- 5
5. द्विघात समीकरण 3x2 – 2x + = 0 के विवेचक का मान होगा |
- 0
- 1/2
- 1
- √3
6. बहुपद 4x2 – 4x + 1 के मूलों का गुणनफल होगा |
- -1
- 1
- 1/4
- 0
7. यदि वर्ग का विकर्ण `16√2 सेमी है, तो वर्ग की भुजा की लम्बाई होगी |
- 4 cm
- 16 cm
- 256 cm
- 4√2
8. प्रथम तीन लगातार प्राकृत संख्याओं का माध्य होगा |
- 1
- 2
- 3
- 4
9. tan 60° का मान होगा |
- √3
- 1/3
- 2/3
- 1
10. sin 18°/cos 72° का मान होगा |
- 1/2
- 1
- 3/2
- 0
11. दो बिंदु P(2, 2) और Q(-2, 2) को मिलाने वाले रेखाखंड के मध्य बिंदु का नियामक ज्ञात करें |
12. दो बिंदु P(2, 3) और Q(4, 2) के बीच की दूरी ज्ञात करें |
13. एक घनाभ के कोरों की लम्बाई क्रमशः 3 सेमी, 4 सेमी और 12 सेमी हैं, तो घनाभ के विकर्ण की लम्बाई ज्ञात करें |
14. p का मान ज्ञात करें यदि समीकरण px(x – 2) + 6 = 0 के मूल बराबर हैं |
15. यदि cot θ= 3/4 तो tan2 θका मान ज्ञात करें |
16. ΔABC में, AB = 6√3 सेमी, AC = 12 सेमी और BC = 6 सेमी, तो ∠B का मान ज्ञात करें |
17. किसी वृत्त के बाह्य बिंदु P से खिचीं गई स्पर्श रेखा PQ की लम्बाई 10 सेमी है, तो P बिंदु से वृत्त पर खींची गई दूसरी स्पर्श रेखा PR की लम्बाई ज्ञात करें |
18. दो खिलाड़ी संगीता और रेशमा टेनिस का एक मैच खेलते हैं | यह ज्ञात है कि संगीता द्वारा मैच जीतने की प्रायिकता 0.62 है | रेशमा के जितने की क्या प्रायिकता है ?
19. मान ज्ञात करें :
20. मान ज्ञात करें :
21. सिद्ध करें कि बिंदु A(-3, 0), B(1, -3) एवं C(4, 1) किसी समकोण समद्विबाहु त्रिभुज के शीर्ष हैं |
22. सिद्ध करें कि बिंदु (-15, 3) (6, -2) एवं (-3, 4) रैखिक हैं |
23. यदि ΔOAB में ∠AOB = 90° तथा OA = a, OB = b, AB = c और O से OP (= P)AB पर लम्ब डाला गया है, तो सिद्ध करें कि
24. सिद्ध करें कि √2 एक अपरिमेय संख्या है |
25. अच्छी प्रकार से फेंटी गई 52 पत्तों की एक गड्डी में से एक पत्ता निकाला जाता है | इसकी प्रायिकता ज्ञात करें कि यह पत्ता एक इक्का होगा |
26. समानान्तर श्रेणी 2, 7, 12 ….. का 10वाँ पद ज्ञात करें |
27. समानान्तर श्रेणी ज्ञात करें जिसका तीसरा पद 5 और 7वाँ पद 9 है |
28. सिद्ध करें कि 1/√2 अपरिमेय संख्या है |
29. 6 सेमी त्रिज्या वाले वृत्त के एक त्रिज्याखंड का क्षेत्रफल निकालें जिसका केन्द्रीय कोण 30° है |
30. सिद्ध करें कि
31. यदि sec θ = 13/12 , cos θ एवं sin θ का मान करें |
32. क्रमशः 6 सेमी, 8 सेमी एवं 10 सेमी त्रिज्या वाले धातु के तीन ठोस गोलों को पिघलाकर एक बड़ा गोला बनाया जाता है, तो परिणामी बड़े गोले की त्रिज्या ज्ञात करें |
33. 8 सेमी त्रिज्यवाले दो घन बराबर से जोड़ दिये जाते हैं, तो परिणामी घनाभ का पृष्ठ क्षेत्रफल ज्ञात करें |
34. सिद्ध करें कि (sec A + tan A) (1 – sin A) = cos A .
35. सिद्ध करें कि tan 9° tan 27° = cot 63° cot 81° .
36. चित्र में TP, TQ केंद्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ हैं जिनमें ∠POQ = 110° तो ∠PTO का मान ज्ञात करें |
37. यदि ΔXYZ का क्षेत्रफल 32 वर्ग सेमी, तो चतुर्भुज YZQP का क्षेत्रफल ज्ञात करें |
38. दो संख्याओं के वर्गों का अंतर 180 है | छोटी संख्या का वर्ग बड़ी संख्या का आठ गुना है | दोनों संख्याएँ ज्ञात करें |
39. सिद्ध करें कि 5√3 अपरिमेय है |
40. राम दो भिन्न-भिन्न सिक्कों को एक साथ उछलता है (मान लिया कि एक सिक्का 1 रु० का है और दूसरा सिक्का 2 रु० का है) | इसकी क्या प्रायिकता है कि वह कम-से-कम एक चित्त प्राप्त करेगा ?
41. त्रिभुज का क्षेत्रफल ज्ञात करें यदि शीर्ष के नियामक (-5, -1), (3, -5) और (5, 2) है |
42. किसी कारखाना के 50 कर्मचारियों की दैनिक मजदूरी का वितरण निम्नलिखित है –
दैनिक मजदूरी (रु० में) | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
कर्मचारियों की संख्या | 12 | 14 | 8 | 6 | 10 |
कारखाना के कर्मचारियों की दैनिक मजदूरी का माध्य ज्ञात करें |
43. 100 मीटर ऊँचे एक भवन के शीर्ष से किसी ध्वजदंड के शीर्ष एवं आधार के अवनमन कोण क्रमशः 45° एवं 60° हैं तो ध्वजदंड की ऊँचाई ज्ञात करें |
या
भूमि के किसी बिंदु से किसी मीनार की चोटी का उन्नयन कोण 30 है | मीनार की ओर 40 मीटर जाने पर चोटी का उन्नयन कोण 60° हो जाता है | मीनार की ऊँचाई ज्ञात करें |
44. समीकरण युग्म x + 3y = 6, 2x – 3y =12 का हल ग्राफीय विधि से ज्ञात करें |
या
समीकरण युग्म y = 2x – 2, y = 4x – 4 का हल ग्राफीय विधि से ज्ञात करें |
45. 3.5 सेमी त्रिज्या का एक वृत्त खींचें | इसके परिगत एक समबाहु त्रिभुज बनाएँ |
या
7.5 सेमी लम्बी एक रेखा खंड खींचकर उसे 3:2 के अनुपात में अंत विभाजित करें |
46. तीन लगातार प्राकृत संख्याओं के वर्गों का योग 110 है, तो संख्याएँ निकालें |
या
एक नाव, जिसकी स्थित जल में चाल 18 km/h है, 24 km धारा के प्रतिकूल जाने में वाही दूरी धारा के अनुकूल जाने की अपेक्षा एक घंटा अधिक लेती है | धारा की चाल ज्ञात करें |
47. सिद्ध कर्रें कि यदि किसी त्रिभुज की एक भुजा के समानान्तर, अन्य दो भुजाओं को भिन्न-भिन्न बिन्दुओं पर प्रतिच्छेद करने के लिए एक रेखा खींची जाए तो अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं |
या
पाइथागोरस प्रमेय को लिखें एवं सिद्ध करें |